

Page 1 of 18 Version 3.1, May 2017

xxter	scripts	manual	
	

The	basics	 2	

Script	management	 3	

Script	editor	 4	

Commands	 5	
Controlling	components	 5	
Controlling	(other)	scripts	 6	
Using	delays	 7	
Scenarios,	alerts	and	schedulers	 9	
Commands	 9	

Values	 10	

Variables	and	calculation	 10	
Variables	 10	
Calculation	 11	

Functions	 12	
Mathematical	functions	 12	
Time	functions	 13	
Text	functions	 15	

Control	structures	 16	
IF	and	WHILE	 16	
BEGIN	and	END	 17	

Other	 18	

Page 2 of 18 Version 3.1, May 2017

	

xxter	scripts	
	
With	xxter	scripts	you	can	create	your	own	small	programs	within	xxter.	These	scripts	are	very	
flexible	and	can	be	used	to	add	a	wide	variety	of	features	to	a	home	automation	installation.	You	can	
create	logic	functions,	delay	actions,	extend	your	scenarios	with	RGB	sequences	and	much	more.	
Scripts	can	be	activated	using	a	scenario,	a	schedule,	an	action	(trigger)	or	another	script.	
	
In	addition	to	this	manual,	several	examples	are	also	available	for	download	on	our	website	to	create	
specific	features	with	xxter	scripts.	These	examples	might	be	very	useful	not	only	for	these	specific	
features,	but	also	for	learning	how	xxter	scripts	work.	
	

The	basics	
	
xxter	scripts	are	written	programs	that	consist	of	one	or	more	lines.	Each	line	should	contain	only	one	
specific	command.	You	cannot	put	multiple	commands	on	one	line.	You	can	add	comments	to	a	
script	by	writing	a	“#”	character.	This	can	be	done	on	a	separate	line	or	at	the	end	of	a	command.	
	
An	example	of	an	xxter	script:	
	

	
	
Scripts	can	be	started	and	stopped	by	many	means,	for	example	by	a	scenario	or	a	schedule.	Scripts	
can	be	"unending"	scripts	that	perform	certain	actions	in	repeating	intervals	or	can	be	defined	as	a	
sequence	of	commands	that	are	executed	only	once,	whenever	the	script	is	started.		
	
	 	

Page 3 of 18 Version 3.1, May 2017

Script	management	
	
xxter	scripts	can	be	created	and	updated	using	the	xxter	editor.	This	editor	can	be	found	in	the	
project	configuration	of	“My	xxter”.	Select	the	project	for	which	you	want	to	manage	the	scripts	and	
select	“Scripts”	in	the	menu	bar.	All	existing	scripts	will	be	shown	here	and	can	be	edited	and	
deleted.	
	

	
	
Important:	When	you	add	or	edit	a	script,	this	has	to	be	loaded	onto	the	xxter	device	before	it	can	be	
used.	
	
Whenever	a	change	has	been	made,	you	can	see	the	text	“Project	has	changed”	at	the	top	right	hand	
corner.	When	you	click	on	this	and	subsequently	on	“Push	configuration	to	xxter	device”,	the	device	
will	download	the	new	configuration.	This	feature	can	only	be	used	when	xxter	is	configured	for	use	
outside	(see	chapter	13	of	the	installation	manual).	Alternatively	you	can	reload	the	profile	using	the	
app	(see	chapter	11	of	the	user	manual).	Of	course	you	can	also	reload	the	profile	from	the	xxter	
device	itself,	by	logging	onto	the	device	and	clicking	the	button	“Load	configuration”	at	the	top	left	
hand	corner	in	the	menu.	
	
When	you	are	logged	in	on	the	device,	you	can	see	the	loaded	scripts	by	clicking	the	“Scripts”	option	
in	the	menu.	Here	a	script	can	also	be	manually	started,	restarted	or	stopped	for	testing	purposes.

		

Page 4 of 18 Version 3.1, May 2017

Script	editor	
	
When	you	add	or	edit	a	script,	you	can	select	whether	it	should	be	enabled	and	you	can	select	
whether	the	script	should	be	available	for	the	end	user,	to	use	in	scenarios	or	the	scheduler.	You	can	
also	select	if	the	script	should	be	started	automatically,	whenever	the	xxter	device	is	(re)	started.	
	
IMPORTANT:	Disabled	scripts	cannot	be	executed	and	will	not	be	triggered	when	included	in	a	
scenario,	action	or	scheduler.	This	can	be	useful	for	testing	and	troubleshooting	proposes.	However,	
keep	in	mind	that	a	script	can	be	enabled	or	disabled	by	another	script!	
	

	
	
The	line	numbers	that	are	displayed	next	to	the	script	are	informational	only	and	are	not	used	in	the	
scripts	themselves.	Commands	can	be	added	by	typing	them	in	directly	or	by	using	the	command	
selection	tool,	located	at	the	right	hand	side	top	corner.	Make	sure	you	are	at	the	right	position	in	
the	script	editor	when	adding	a	command	with	the	commands	tool.	When	adding	a	command	with	
the	commands	tool,	the	appropriate	fields	regarding	your	xxter	configuration	will	be	added	as	links	
automatically.	This	allows	a	quick	and	easy	way	to	add	correct	commands	using	the	editor.	
	

	

Page 5 of 18 Version 3.1, May 2017

After	you	have	added	one	or	more	commands	in	the	editor,	you	can	verify	if	they	are	valid	by	clicking	
the	"Save	and	check"	button.	Your	current	script	will	be	checked	and	redisplayed	in	the	editor.	All	
lines	that	are	correct	will	be	displayed	in	black.	All	lines	in	red	indicate	it	contains	an	error	
somewhere	on	that	line.	Comment	will	always	be	displayed	in	green.	
	

	
	
After	correcting	or	adding	lines,	you	can	easily	verify	the	script	again	by	using	the	"Save	and	check"	
button.	When	everything	is	correct	you	can	use	the	"Save	and	close"	button	to	close	the	editor.	
	
Note:	scripts	that	contain	errors	can	be	saved	and	started.	However	the	lines	that	contain	errors	(and	
are	displayed	in	red)	will	not	be	executed	during	the	execution	of	the	script.	xxter	will	skip	them	and	
continue	with	the	next	line.		
	

	
	
Scripts	will	automatically	stop	running	after	the	last	command	of	the	script	has	been	executed.	
	
When	using	the	command	selection	tool,	parts	of	the	command	will	be	displayed	between	[]	
brackets.	These	parts	need	to	be	replaced	by	valid	input.	The	default	text	shown	in	between	these	
brackets	will	give	you	an	indication	of	the	required	value.	
	
Scripts	are	written	using	commands	and	values.	Additionally	scripts	can	be	extended	using	variables,	
calculations,	functions	and	certain	control	structures	like	IF	statements	and	WHILE	loops.	

Commands	
	
The	commands	section	is	divided	in	the	different	main	types	of	commands	that	are	available.		

Controlling	components	
	
SET [component] TO [value]
	
With	this	command	you	can	set	bit,	byte	and	float	(2byte)	components	to	a	specified	value.	
Use	the	“.”	character	as	separator	for	floating	point	values.	You	can	also	use	other	components	as	
the	value	part	of	this	command.	This	allows	you	to	set	one	component	to	the	value	of	another.	
	

Page 6 of 18 Version 3.1, May 2017

SET [RGB component] TO [red],[green],[blue]
	
This	command	lets	you	set	a	RGB	component	to	a	specified	colour.	The	colour	must	be	described	
with	the	red,	green	and	blue	values,	all	using	a	range	of	0-255.	Instead	of	using	static	values,	you	can	
replace	any	of	the	three	primary	colour	parts	with	a	BYTE	component.	You	can	also	replace	all	the	
component	parts	together	with	a	single	other	RGB	component.	This	allows	you	to	set	a	RGB	
component	to	another	RGB	components	colour.	
	
FADE [component] TO [value] IN [time]	
	
This	command	is	quite	similar	to	the	two	commands	above;	you	can	use	it	on	bytes,	floats	and	RGB	
values.	Instead	of	setting	the	value	directly,	this	command	changes	the	values	in	steps	from	the	
current	value	to	the	value	specified.	You	can	specify	the	time	as	a	static	value	or	use	the	value	of	a	
component.	Possible	time	units	are	MSEC/SEC/MIN/HOUR/DAY.	If	no	units	are	specified	for	the	time	
value,	milliseconds	are	assumed.	This	command	changes	the	value	of	the	component	every	second.	
Similar	to	the	SET	command,	you	can	also	use	this	command	in	combination	with	RGB	components.	
	
FADE [component] TO [value] in [time] STEP [time]
	
This	command	is	similar	to	the	command	above;	it	just	adds	the	specification	of	the	step	time.	When	
the	step	time	is	not	specified,	the	FADE	command	changes	the	value	every	second.	By	specifying	the	
step	time,	you	can	change	this	to	for	example	every	30	minutes,	or	100	milliseconds.	The	minimum	
value	is	100	milliseconds.	Similar	to	the	SET	command,	you	can	also	use	this	command	in	
combination	with	RGB	components.	
	
READ [component]
	
With	this	command	you	can	request	the	current	status	of	the	component	on	the	bus.	You	can	also	
use	the	command	for	scenarios.	This	will	perform	a	READ	for	every	component	that	is	included	in	the	
scenario.	

Controlling	(other)	scripts	
	
STOP
	
This	command	simply	stops	the	current	script.	
	
RESTART
	
This	command	restarts	the	current	script.	In	other	words	it	starts	running	again	from	the	beginning.	
	

Page 7 of 18 Version 3.1, May 2017

IMPORTANT:	restarting	a	script	without	using	a	WAIT	command	(see	next	section)	will	bring	the	
script	in	a	direct	infinite	loop,	which	should	be	avoided.	
START [script]
	
This	will	start	another	script	if	it	is	not	running	at	the	moment.	Replace	[script]	with	the	actual	script	
you	wish	to	start.	
	
START AT BEGIN [script]
	
This	will	start	another	script	if	it	is	not	running.	If	it	is	running	it	will	tell	the	script	to	start	over	again	
from	the	beginning	(restart).	Replace	[script]	with	the	actual	script	you	wish	to	(re)start.	
	
STOP [script]
	
This	will	stop	another	script	if	it	is	running.	Replace	[script]	with	the	actual	script	you	wish	to	stop.	
	
SET [script] TO [on/off]
	
This	command	allows	you	to	enable	or	disable	a	script.	Replace	[script]	which	the	actual	script	you	
wish	to	enable/disable.	All	values	greater	than	0	are	interpreted	as	ON,	all	values	of	0	or	below	are	
interpreted	as	OFF.	This	can	be	helpful	when	using	a	certain	component	to	activate/deactivate	
scripts.	
	
Disabling	a	script	that	is	currently	running	will	also	directly	stop	the	script.	

Using	delays	
	
WAIT [time] or WAIT [time] MSEC/SEC/MIN/HOUR/DAY
	
This	command	will	put	the	script	on	hold	for	the	given	period	of	time.	If	no	time	units	are	supplied,	
milliseconds	are	assumed.	The	maximum	waiting	time	is	approximately	20	days.	Instead	of	entering	a	
static	value,	you	can	use	a	value	from	a	component	as	well.	(BYTE	or	2BYTE)	
	

	
	
WAIT [time] RANDOM [time]
	
This	command	is	similar	to	the	previous	command,	however,	this	command	waits	for	the	given	time	
with	an	addition	of	a	random	generated	time	in	the	interval	given	as	the	second	time	range.	For	

Page 8 of 18 Version 3.1, May 2017

example:	WAIT	1	HOUR	RANDOM	30	MIN	will	wait	somewhere	between	1	hour	and	1,5	hours.	Every	
time	the	command	is	executed,	this	will	be	recalculated	with	a	different	result.	

Page 9 of 18 Version 3.1, May 2017

Scenarios,	alerts	and	schedulers	
	
Existing	scenarios,	alerts	and	schedulers	can	be	used	in	scripts,	with	the	following	commands:	
	
CALL [scenario]
	
This	will	call	the	specified	scenario.	Replace	[scenario]	with	the	actual	scenario	you	wish	to	call.	

LEARN [scenario]
	
This	will	modify	the	scenario.	All	components	in	the	scenario	will	be	set	to	their	current	state	in	the	
home	automation	installation.	

CALL [alert]	 	 or	 CALL [alert] WITH [value]	
	
This	allows	you	to	use	the	alert	service	from	within	scripts.	If	no	value	is	specified,	0	is	used.	Replace	
[alert]	with	the	actual	alert	you	wish	to	call.	
	
SET [scheduler] TO [on/off]
	
This	command	allows	you	to	enable	of	disable	a	scheduler.	Replace	[scheduler]	with	the	actual	
scheduler	you	wish	to	activate	or	deactivate.	All	values	greater	than	0	are	interpreted	as	ON,	all	
values	of	0	or	below	are	interpreted	as	OFF.	Keep	in	mind	this	will	only	work	on	schedulers	that	can	
be	manually	enabled	or	disabled.	Schedulers	that	are	automatically	enabled	or	disabled	based	on	a	
component	cannot	be	enabled	or	disabled	by	a	script.

Commands	
	
EXECUTE [network command]
	
This	allows	you	to	use	a	network	command	from	within	scripts.	Replace	[network	command]	with	the	
actual	command	you	wish	to	use.		
	
EXECUTE [ir command]	
	
This	allows	you	to	use	an	infrared	command	from	within	scripts.	Replace	[ir	command]	with	the	
actual	command	you	wish	to	use.		
	

Page 10 of 18 Version 3.1, May 2017

EXECUTE ON [upnp device] [upnp command]
	
This	allows	you	to	use	a	command	on	a	uPnP	device	from	within	scripts.	Replace	[upnp	device]	with	
the	desired	uPnP	device	and	[upnp	command]	with	the	actual	command	you	wish	to	use.		
	
EXECUTE ON [diva] [diva macro]
	
This	allows	you	to	use	a	command	on	a	diva	device	from	within	scripts.	Replace	[diva]	with	the	
desired	diva	server	and	[diva	macro]	with	the	diva	macro	you	wish	to	use.	

Values	
	
When	you	insert	a	command	through	the	script	command	list,	values	and	components	are	displayed	
in	[]	brackets.	These	are	displayed	to	indicate	what	you	should	enter	at	the	appropriate	location.	
When	possible	the	editor	will	make	a	link	to	the	right	listing	of	components,	scripts,	alerts,	schedules	
or	scenarios.	The	right	value	can	then	be	selected.	
	
Valid	components	are	written	for	example	as	SCENARIO(123/name).	In	this	example	a	scenario	is	
intended	with	the	identifier	“123”.	The	name	is	displayed	for	readability	only.	You	do	not	have	to	
enter	the	correct	name,	because	the	correct	name	will	be	automatically	inserted	after	the	script	is	
validated.	
	
For	many	commands	you	will	normally	use	a	static	value,	for	example	WAIT	20	SEC.	However,	in	
some	circumstances	it	might	by	useful	to	use	the	value	of	a	component	instead.	With	all	commands	
you	can	replace	the	static	value	with	a	component.	
	
Time	values	are	assumed	in	milliseconds	if	no	time	unit	is	specified.	Valid	units	are:		
MSEC,	SEC,	MIN,	HOUR	and	DAY.	

Variables	and	calculation	
	
The	basic	commands	and	values	can	be	extended	further	with	the	use	of	variables	and	calculations.	

Variables	
	
You	can	define	your	own	variables	in	scripts,	which	are	defined	as	global	variables,	useable	across	all	
different	scripts	on	the	xxter	device.	A	variable	starts	with	a	dollar	sign	“$”,	for	example:	$AVERAGE	
The	name	of	the	variable	can	consist	of	alphanumeric	characters	(A-Z	and	0-9).	
	
You	can	use	variables	to	store	any	value,	for	example:	
	
$LIGHTPERCENTAGE = 0	
SET BYTE(21/Spots) TO $LIGHTPERCENTAGE	

Page 11 of 18 Version 3.1, May 2017

	
Or	
		
$LIGHTSPOTS = BYTE(21/Spots)	
SET BYTE(24/Spots Kitchen) TO $LIGHTSPOTS	

Calculation	
	
You	can	use	variables	to	calculate	values	using	arithmetic	operators.	Calculations	are	written	in	the	
following	manner:	
	
$MAXLIGHT = (2 * 10) + 10
	
Of	course	you	can	use	values	of	components	as	well,	for	example:	
	
$MAXLIGHT = (2 * BYTE(21/Spots)) + 10
	
IMPORTANT:	when	using	calculations	you	should	always	make	use	of	brackets.	When	no	brackets	are	
used,	the	calculation	is	processed	in	the	order	it	is	written!	For	instance	2	*	10	+	10	will	result	in	30,	
but	10	+	2	*	10	will	have	a	result	of	24.	You	can	prevent	this	by	writing:	10	+	(2*10).	Always	keep	this	
in	mind	when	using	calculations.		
	
Floating-point	values	can	be	used	by	using	the	“.”	as	a	separator,	for	instance	2.42	
	
Note	that	all	variables	are	xxter	wide.	So	if	you	set	a	specific	variable	in	one	script	another	script	can	
use	that	value	as	well.	If	you	want	to	use	a	specific	variable	only	in	one	script,	make	sure	other	scripts	
do	not	use	the	same	variable	name.	
	
The	following	operators	can	be	used:	
+		 plus	
-	 minus	
*	 multiply	
/	 divide	
%	 modulo	(division	remainder)	
^	 power	
&	 and	 	 	 (result	=	1	if	both	values	greater	than	0,	0	if	not)	
|	 or	 	 	 (result	=	1	if	one	of	the	values	is	greater	then	0,	0	if	not)	
=	 is	equal	to	 	 (result	=	1	if	true,	0	if	not)	
<	 is	smaller	than	 	 (result	=	1	if	true,	0	if	not)	
>	 is	greater	than	 	 (result	=	1	if	true,	0	if	not)	
<>	 is	not	equal	to	 	 (result	=	1	if	true,	0	if	not)	
	
A	square	root	can	be	made	with	the	power	operator:	^	(1/2)			=		to	the	power	of	½	=	the	square	root	of	the	value.	

Page 12 of 18 Version 3.1, May 2017

Functions	
	
There	are	several	functions	available	in	scripts	to	calculate	values.	These	functions	can	be	used	in	
combination	with	commands	or	with	variables.		

Mathematical	functions	
	
ROUND (value)	 	 or	 ROUND (value, precision)	
	
Returns	the	rounded	value	of	the	given	value.	When	no	precision	is	specified,	a	precision	of	0	is	used.	
For	example	ROUND(4.3)	=	4	and	ROUND(4.321,	1)	=	4.3	
	
FLOOR (value)	 	 or	 FLOOR (value, precision)	
	
Returns	the	floored	(rounded	down)	value	of	the	given	value.	When	no	precision	is	specified,	a	
precision	of	0	is	used.	For	example	FLOOR(4.7)	=	4	and	FLOOR(4.987,	1)	=	4.9	
	
CEIL (value)	 	 or	 CEIL (value, precision)	
	
Return	the	ceiled	(rounded	up)	value	of	the	given	value.	When	no	precision	is	specified,	a	precision	of	
0	is	used.	For	example	CEIL(4.3)	=	5	and	CEIL(4.321,	1)	=	4.4	
	
ABS (value)
	
Returns	the	absolute	value	of	the	given	value,	so	ABS(-4)	=	4	and	ABS(6.13)	=	6.13.	
	
MIN (value, value, value, ..)
	
Returns	the	minimum	value	of	all	the	parameters	given.	Requires	a	minimum	of	one	parameter.	
	
MAX (value, value, value, ..)
	
Returns	the	maximum	value	of	all	the	parameters	given.	Requires	a	minimum	of	one	parameter.	
	
AVG (value, value, value, ..)
	
Returns	the	average	value	of	all	the	parameters	given.	Requires	a	minimum	of	one	parameter.	

RANDOM (max value)
	
Returns	a	random	value	between	0	and	the	given	maximum	value.	

Page 13 of 18 Version 3.1, May 2017

Time	functions	
	
NOW()	
	
Returns	the	current	time	as	a	timestamp	in	seconds	since	january	1st	1970	(unix	date).	This	
timestamp	can	be	compared	to	an	earlier	value	to	determine	how	much	time	has	passed.	
	
DAYTIME()	 	 	 of	 DAYTIME(timestamp)	
	
Returns	a	1	if	the	sun	is	up	and	a	0	if	the	sun	is	down.	When	a	timestamp	is	given,	this	time	is	used,	
otherwise	the	current	time	is	used.	
	
SECOND()	 	 	 of	 SECOND(timestamp)	
	
Returns	the	amount	of	seconds	(0-59).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	
	
MINUTE()	 	 	 of	 MINUTE(timestamp)	
	
Returns	the	amount	of	minutes	(0-59).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	

HOUR()	 	 	 of	 HOUR(timestamp)	
	
Returns	the	amount	of	hours	(0-23).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	
	
DAYOFWEEK()		 	 of	 DAYOFWEEK(timestamp)	
	
Returns	the	day	of	the	week	(1-7).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	1	=	Sunday,	2	=	Monday,	..	7	=	Saturday.	
	
DAYOFMONTH()	 	 	 of	 DAYOFMONTH(timestamp)	
	
Returns	the	day	of	the	month	(1-31).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	

DAYOFYEAR()		 	 of	 DAYOFYEAR(timestamp)	
	
Returns	the	day	of	the	year	(1-366).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	

Page 14 of 18 Version 3.1, May 2017

MONTH()	 	 	 of	 MONTH(timestamp)	
	
Returns	the	month	(1-12).	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	current	time	is	
used.	
	
YEAR() 	 of	 YEAR(timestamp)	
	
Returns	the	year,	for	example	“2015”.	When	a	timestamp	is	given,	this	time	is	used,	otherwise	the	
current	time	is	used.	
	
	

Page 15 of 18 Version 3.1, May 2017

Text	functions	
	
CONCAT("abc", "def",)
	
Concatenates	texts	together,	for	example	CONCAT("abc",	"def",	"ghi")	results	in	"abcdefghi".	
Alternatively	you	can	use	the	dot	(".")	as	a	text	operator	to	concatenate	text’s,	for	example	
"abc"."def"."ghi"	results	in	"abcdefghi".	
	
FORMAT(format, parameters....)
	
Can	be	used	to	format	text.	The	format	field	describes	how,	afterwards	parameters	can	be	added	to	
be	used.	Standard	text	will	be	copied	directly,	additionally	the	following	special	format	options	are	
available:	

- Use	%s	to	include	a	value	as	text,	for	example:		
FORMAT("Now	it	is	%s.",	"dry")	results	in	"Now	it	is	dry."	

- Use	%d	to	include	an	integer	value	in	the	text,	for	example:		
FORMAT("It	is	%d	degrees.",	10)	results	in	"It	is	10	degrees."	

- Use	%f	to	include	a	floating	point	value	in	the	text,	for	example:		
FORMAT("It	is	%f	degrees.",	10.12345)	results	in	"It	is	10.12345	degrees."	

%f	has	an	optional	parameter	for	decimal	precision,	use	%.xd	as	format	parameter	where	x	is	
the	number	of	decimals.	Pay	attention	to	the	“.”	After	the	%	sign.	For	example:	

FORMAT("It	is	%.2f	degrees.",	10.12345)	results	in	"It	is	10.12	degrees."	
- use	%%	to	display	a	%	symbol,	for	example:		

FORMAT("The	window	is	%d%%	closed.",	10)	results	in	"The	window	is	10%	closed."	
	
SUBSTR(text, startindex) or
SUBSTR(text, startindex, length)	
	
Can	subtract	a	portion	of	another	text.	Note	that	the	start	index	starts	at	0.	You	can	use	this	function	
with	or	without	length.	Without	the	length	parameter,	the	text	part	will	be	used	till	the	end	of	the	
text.	
For	example:	 SUBSTR("abcdef",	3)		 	 results	in	"def"	
For	example:	 SUBSTR("abcdef",	3,	1)	 results	in	"d"	
	
STRLEN(text)
	
This	function	returns	the	length	of	the	text	given,	for	example	STRLEN("abcdef")		results	in	6.	
	

Page 16 of 18 Version 3.1, May 2017

Control	structures	

IF	and	WHILE	
	
IF	statements	and	WHILE	loops	can	be	used	to	execute	specific	actions	only	if	a	condition	is	met.	The	
condition	can	be	defined	using	all	arithmetic	operators	as	explained	above.	
	
For	example:	
	
IF $LIGHT > 33.33
 $LIGHT = 33.33
	
The	action	that	is	written	on	the	second	line	is	only	executed	when	the	calculation	behind	the	IF	
statement	is	TRUE	(greater	than	0).	The	action	will	be	skipped	if	the	result	is	FALSE	(0	or	below).	
	
If	an	IF	statement	is	used,	an	ELSE	statement	can	be	added	as	well,	like	this:	
	
IF $LIGHT > 33.33
 $X = 100
ELSE
 $X = 0	
	
The	ELSE	statement	should	always	be	on	a	separate	line,	directly	below	the	command	to	execute	
when	the	condition	of	the	IF	statement	is	met.	
	
Apart	from	the	IF	statement,	a	WHILE	statement	can	also	be	used.	The	difference	between	an	IF	
statement	and	a	WHILE	statement	is	that	an	IF	statement	is	performed	once	and	a	WHILE	statement	
will	be	repeated	until	the	condition	is	no	longer	met,	for	example:	
	
$COUNT = 0
WHILE $COUNT < 10
 $COUNT = $COUNT+1
	
The	example	above	will	increase	the	variable	COUNT	until	it	is	10	or	greater.	How	to	execute	multiple	
commands	will	be	explained	in	the	next	section.	
	
IMPORTANT:	when	the	condition	is	never	ending,	the	WHILE	loop	will	continue	indefinitely.	Allowing	
this	without	using	a	WAIT	command	will	bring	the	script	in	a	direct	infinite	loop,	which	should	be	
avoided.	
	

Page 17 of 18 Version 3.1, May 2017

BEGIN	and	END	
	
If	more	than	one	command	needs	to	be	executed	after	an	IF,	WHILE	or	ELSE	statement,	BEGIN	and	
END	statements	can	be	used.	
	
These	should	be	written	on	separate	lines	as	well,	for	example:	
	
$X = 0
WHILE $X < 11
 BEGIN
 $Y = $X * 10
 SET BYTE(22/EXAMPLE BYTE) TO $Y
 $X = $X + 1
 END
	
Another	example:	
	
IF $LIGHT > 33.33
 BEGIN
 $X = 100
 $Y = 0
 END
ELSE
 BEGIN
 $X = 0
 $Y = 100
 END	

Page 18 of 18 Version 3.1, May 2017

Other	
	
SEND WAKEONLAN TO [ma:c :ad:re:ss]		
	
With	this	command	you	can	send	a	wake	on	lan	command	to	a	network	device.		
Replace	[ma:c	:ad:re:ss]	with	the	mac-address	of	the	intended	device.	
	
OPEN KNXTUNNEL	
	
With	this	command	you	can	enable	the	knx	tunnel	access	on	the	xxter	device	for	programming	with	
ETS	for	a	period	of	8	hours.		
	
CLOSE KNXTUNNEL	
	
With	this	command	you	can	disable	the	knx	tunnel	access	on	the	xxter	device	for	programming	with	
ETS	
	
	
	
	
Using	all	described	commands,	values,	functions	and	control	structures	will	allow	you	to	create	
almost	any	functionality	required.		
	

